
CNT 4603: Scripting – Windows PowerShell – Part 4 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Spring 2012

Scripting – Windows PowerShell – Part 4

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603/spr2012

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 2 Dr. Mark Llewellyn ©

Script Development In PowerShell

• While we are currently focusing on PowerShell, much of what

is covered in this section of notes pertains to script

development in any language or environment.

• A structured approach to scripting can be applied to a wide

variety of coding and development projects. Although not

every scripting project requires the same level of attention and

detail, any scripts that are developed for use in a production

environment will benefit tremendously from applying a clear,

well-documented, and supportable scripting methodology.

• As with any software development project, you should choose

a development life cycle model that fits the needs of your

project.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 3 Dr. Mark Llewellyn ©

Script Development In PowerShell

• The Waterfall model is a traditional approach to the software

development life cycle.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 4 Dr. Mark Llewellyn ©

Script Development In PowerShell

• The Iterative model is a more current model used for the

software development life cycle.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 5 Dr. Mark Llewellyn ©

Script Development In PowerShell

Analysis

Design

Architecture

Development Testing

Deployment

Training Maintenance

• A more general process

map for a generic scripting

project. Although similar to

a full development life

cycle model, the steps are

simply pointers to tasks that

need to be completed in a

typical scripting project.

• You can choose to follow

this model or develop your

own, but choose some

method for managing your

project.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 6 Dr. Mark Llewellyn ©

Design And Prototype Scripts Using Pseudocode

• Often scripts are designed and prototyped using pseudocode. This

technique allows you to develop the structure and logic of a script

before writing any code.

• Working out the structure and logic beforehand helps you ensure

that your script will meet its requirements and allows you to detect

possible logic flaws early in the process.

• Pseudocode is language independent and can be written so that

other people, especially those who need to provide input on the

script design, can read and understand it easily.

• The example on the next page illustrates a pseudocode mock-up

for a script.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 7 Dr. Mark Llewellyn ©

Script Development In PowerShell

Param domain

Param resource account CSV file

Bind to domain

Open and read CSV file

For each resource account in CSV file:

 - Create a new account in the specified OU.

 - Set the password (randomly generate complex 14-character password).

 - Log password to administrative password archive.

 - Set the user account attributes based on CSV file information.

 - Mail-enable the new account.

 - Add the user to the appropriate groups based on CSV file information.

Next

Pseudocode Representation Of A Script

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 8 Dr. Mark Llewellyn ©

Gather Script Requirements Effectively

• As with any project, you need to define the problem your script will be

addressing to determine what is required of the script.

• Sometimes a script is solving a simple automation requirement, so the

requirements will be fairly easy to determine.

• When a script is solving a more complex business/enterprise automation

need, you might need to learn more about the business/enterprise processes

being automated to determine the requirements that the script must meet.

• In any case, to ensure the success of your scripting project, you must

identify the requirements for the script and have all parties sign off on those

requirements.

• Overlooking these steps in the development process might mean that your

final script fails to meet its requirements and is then rejected as a solution

for the original business/enterprise need.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 9 Dr. Mark Llewellyn ©

Don’t Develop Scripts In A Production Environment

• Most scripts are designed to make changes to a system, so there is always a

chance that running a script in a production environment could have

unwanted or potentially damaging results.

• Even if a script makes no changes, it may still have an undesirable effect, or

you might not fully understand its impact.

• Even worse, when the script is run to test its functionality, you might

accidently run the script outside your designated testing scope and affect the

production systems.

• Scripts can be very powerful and fast-acting tools that can be exceptionally

helpful to a system administrator, but with this power must come

knowledge and responsibility. Until you fully understand exactly what a

script will do, it should only be executed in an isolated environment. This

is another application in which virtualization plays a major role.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 10 Dr. Mark Llewellyn ©

Test, Test, and More Testing

• Scripts are typically written to perform some automation task. An

example might be to modify an attribute on every user in an

Active Directory domain.

• The automation task might carry a high or low level of impact, but

some form of quality assurance testing should be conducted on the

script before it is ever run in a production environment.

• Scripts in particular should be thoroughly tested because of their

potential effect on an environment.

• Scripts which only read information are generally quite safe to

run. For example, a script that creates a list of Active Directory

users attributes but does not write any information to AD has a

very low probability of causing any problems.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 11 Dr. Mark Llewellyn ©

Test, Test, and More Testing

• On the other hand, whenever a script makes modifications to

objects, it is important to understand what changes are being

made, and to provide a rollback strategy whenever possible.

• For example, if you are writing a script to modify the description

field of every user object in Active Directory, you could use the

CSVDE utility (Comma Separated Value Directory Exchange, see

http://social.technet.microsoft.com/wiki/contents/articles/comma-

separated-value-directory-exchange-csvde-utility.aspx) to export

the existing user description fields to a file prior to running the

script. This way, if the script produced some unexpected results,

you could review the export file for the differences, or even re-

import the original description fields if necessary.

http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx
http://social.technet.microsoft.com/wiki/contents/articles/comma-separated-value-directory-exchange-csvde-utility.aspx

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 12 Dr. Mark Llewellyn ©

Develop Professional Level Scripts

• Many scripters tend to view scripting as a quick and easy way to

complete tasks and don’t see the need for professional

considerations, such as planning, documentation, and standards.

• This mindset may be a holdover from the days when scripting was

considered a clandestine task reserved for Unix and Linux gurus.

Scripting languages, like PowerShell are changing this mindset

and are leading the way for how system administrators manage

their environments. This is changing rapidly how scripting is

viewed to where it is now considered an essential solution to

business/enterprise automation needs and therefore, a task must be

done with professionalism.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 13 Dr. Mark Llewellyn ©

Develop Professional Level Scripts

• To be professional when developing scripts, you should make sure

that your work meets a certain level of quality by developing

standards for all your scripts to meet: writing clear and concise

documentation, following best practices in planning and layout,

testing thoroughly, and so forth.

• Adhering to professional standards can also ensure that others

accept your work more readily and consider it more valuable.

• The next few pages will examine more closely some best practices

that should be applied to script design.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 14 Dr. Mark Llewellyn ©

Script Design: Configuration Information

• When setting variables, parameters, and so on that control script

configuration, you should always place them near the beginning of

the script to make locating these items easy for anyone using,

reading, or editing the script.

• This practice will help to reduce the number of errors introduced

when editing the script configuration. If configuration information

is spread throughout the script, it is much more likely to be

misconfigured, declared multiple times, or simply forgotten.

• The template on the next page illustrates a best practice format for

script configuration information.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 15 Dr. Mark Llewellyn ©

Script Design: Configuration Information

#--
Set variables
#--
$Owner = “Administrators”
$Targets = import-csv $ImportFile
. . .

#--
Script Body
#--
. . .

Template For Script Configuration Information Location

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 16 Dr. Mark Llewellyn ©

Script Design: Use Comments

• Most programmers and scripters groan when they think about

commenting. It is however, an extremely important and often

neglected aspect of professional coding.

• You can’t assume that other users, reviewers, editors, etc., of your

scripts will understand the logic you’ve employed in a script or be

familiar with the methods you used to perform various tasks.

Therefore, using comments to assist users in understanding your

script is not only good practice, but often vital.

• Comments don’t always have to be extensive, but should provide

enough information to help users see how the logic flows.

• If your script contains a complex method, class, or function,

adding a comment to explain what it does is very useful.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 17 Dr. Mark Llewellyn ©

Script Design: Use Comments

• While commenting is often viewed from the point of others who

use your scripts/code, it is also very helpful from your own

viewpoint.

• Often you will be the one to update or review your own scripts

and the comments will be most helpful to you when you review a

script that you created 6 months or a year ago.

• The following page illustrates a common commenting style

applied to scripts that most readers/reviewers find helpful and

informative. This one illustrates the comments for a method and

the variables defined within the method.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 18 Dr. Mark Llewellyn ©

Script Design: Use Comments

#--
ADD – DACL method
#--
Usage: Grants right to a folder or file.

$Object: The directory or file path. (Ex. “c:\myfolder” or “c:\myfile.txt”)

$Identity: User or Group name. (Ex. “Administrators” or “mydomain\user1”)

$AccessMask: The access right to use when creating the access rule.
(Ex. “FullControl”, “ReadandExecute”, “Write”, etc.)

$Type: Allow or deny access. (Ex. “Allow” or “Deny”

Commenting Style For Scripting

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 19 Dr. Mark Llewellyn ©

Script Design: Avoid Hard-Coding Configuration Info.

• Hard-coding configuration information is a commonly made

mistake. Instead of asking the user to supply the required

information, the configuration information is hard-coded into

variables or randomly scattered throughout the script.

• Hard-coding requires users to manually edit scripts to set the

configuration information, which increases the risk of mistakes

that will result in errors when the script executes.

• Part of your goal as a script designer is to provide usable scripts;

hard-coding information makes using a script in a different

environment difficult.

• Instead, use parameters or configuration files, as shown on the

next page.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 20 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 21 Dr. Mark Llewellyn ©

User forgets to enter the

search path. Error message

generated informing them to

supply the search path.

User supplies the search

path…all is good!

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 22 Dr. Mark Llewellyn ©

Script Design: Avoid Hard-Coding Configuration Info.

• Occasionally, it is necessary to hard-code configuration

information into a script.

• When this is necessary, use the convention of representing the

information in the form of a variable.

• Define the configuration information in a variable in one place (as

before, near the top of the script), rather than actually hard-coding

it into several different places scattered throughout the script. This

will decrease the chances of introducing errors when/if the

information needs to be changed.

• Representing the information in a variable at the top of the script

also decreases the time required to reconfigure the script for a

different environment.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 23 Dr. Mark Llewellyn ©

Script Design: Provide Instructions

• Most scripts you develop will be written for use by others, such as other

system administrators, or customers. Customers in particular, will not be

comfortable with code or CLI.

• Remember that your scripts must be usable and useful. If you don’t

provide instructions to make sure a novice can run the script and

understand what it does, you haven’t succeeded as a scripter.

• It’s pretty common to see scripts without any instructions, or incorrect

instructions, or provide little if any explanation of what the script does.

For a user, this type of script can be quite frustrating. Even worse, the

user may have no clue as to the impact the script might have on their

environment and running it could lead to disaster.

• The example on the next page illustrates instructions that might be in a

readme file or at the top of the script to explain a script’s purpose and how

it works.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 24 Dr. Mark Llewellyn ©

Script Design: Provide Instructions

#---
Script Information
#---
Name: AddProxyAddress.ps1
Author: Mark Llewellyn
Date: March 21, 2012

Description:
Use this script to add secondary proxy addresses to users based on a CSV import file. When trying to
add the additional proxy addresses, this script checks the following conditions:

Does the user exist?
Is the user mail-enabled?
Does the proxy address currently exist?

This script creates a log file each time it is run.
CSV file format:
[sAMAccountName],[ProxyAddresses]
mark, mark@savn.local;support@savn.local
kristy, kristy@savn.local

The ProxyAddress column is ; delimited for more than one proxy address.
#---

mailto:mark@savn.local;support@savn.local
mailto:kristy@savn.local

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 25 Dr. Mark Llewellyn ©

Script Design: Perform Validity Checking

• Failing to perform validity checks on required parameters is

another common mistake. If your script requires input from the

user, neglecting these validity checks might mean users enter the

wrong input and the script halts with an error.

• This sort of oversight might not be a major issue with small

scripts, but with large, complex scripts, it can seriously affect their

usability.

• To illustrate this consider the scenario on the following page.

• To prevent this problem, make sure you perform validity checking

on required parameters as shown in the example on page 27.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 26 Dr. Mark Llewellyn ©

Script Design: Perform Validity Checking

• Let’s say you wrote a script the performs a software inventory. In

your development environment consisting of a few machines, you

run the script, but fail to provide the correct information for a

required parameter. The script runs, and a couple of seconds later, it

fails. You realize that you mistyped a parameter, so you correct your

mistake and rerun the script.

• Now the system administration runs your script in the production

environment against thousands of machines; it runs for six hours and

then fails. Reviewing the error information, the SA discovers the

script failed because of a mistyped parameter. At that point the SA

has already invested six hours only to encounter an error and might

conclude that your script isn’t usable. In other words, you wrote the

script that worked in your developmental environment but not in the

production environment.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 27 Dr. Mark Llewellyn ©

Script Design: Perform Validity Checking

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 28 Dr. Mark Llewellyn ©

Script Design: Perform Validity Checking

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 29 Dr. Mark Llewellyn ©

User forgets to enter the

either the source folder or

the file name

User enters source folder

but forgets to enter the file

name

User enters both required

parameters – script

executes successfully.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 30 Dr. Mark Llewellyn ©

Script Design: Provide Status Information To Users

• Providing status information in an automation script is essential so

that the user understands how the script is progressing during

execution and can confirm whether script tasks have been completed

successfully.

• Status information also lets users know whether any errors have

occurred, and it can even indicate how much longer until the script

will finish running.

• In PowerShell you can provide status information to users in the form

of console displays by using the write-host and write-progress

cmdlets, write status information to a log file, or leverage Windows

Forms to report on the status of your script.

• The script execution on the following page illustrates some of these

features.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 31 Dr. Mark Llewellyn ©

Script Design: Provide Status Information To Users

This script is providing

various types of status

information to the user as it

performs its tasks.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 32 Dr. Mark Llewellyn ©

Script Design: Provide Status Information To Users

• Regardless of the method you use, the idea is to provide enough

status information without overloading the user with useless details.

• If you need to write different levels of detail when displaying
information to the user, you can use the write-verbose and

write-debug cmdlets, the verbose and debug parameters, or

create entirely custom output.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 33 Dr. Mark Llewellyn ©

Script Design: Use The WhatIf and Confirm

Parameters

• PowerShell includes two cmdlet parameters that are designed to

help prevent scripters and system administrators from making

unintended changes.

• The WhatIf parameter is designed to return information about

changes that would occur if the cmdlet runs but doesn’t actually

make those changes.

• The Confirm parameter prevents unwanted modifications by

forcing PowerShell to prompt users before making any changes.

• The example on page 35 illustrates the WhatIf parameter. The

example on page 36 illustrates the Confirm parameter.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 34 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 35 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 36 Dr. Mark Llewellyn ©

Script Design: Use The WhatIf and Confirm

Parameters

• The WhatIf and Confirm parameters are a programmatic way

to provide a safety net for the users of your scripts. These

parameters are unique to PowerShell and are often overlooked by

scripters.

• Although you need to include the support for the WhatIf and

Confirm parameters in your script, doing do makes it far less

likely that your script will accidently perform an unintentional

damaging action.

• The WhatIf parameter specifically allows you to see the results

of a script without actually executing it, making it easy to fine-

tune your script before actually running it live. Note that these

two parameters only apply to cmdlets that make modifications.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 37 Dr. Mark Llewellyn ©

PowerShell Community Scripting Standards

• One of the defining characteristics of PowerShell as a language is it

adoption and advancement by a diverse, worldwide group of scripters

and IT professionals.

• One example of this type of adoption is the PowerShell Community web

site at http://powershellcommunity.org. The members of this

community collaborate on a wide variety of PowerShell topics,

including scripts, blog entries, and the latest PowerShell developments

from technology vendors.

• The community maintains a library of generally agreed-upon best

practices for scripting and related topics. I urge you to check out the

site.

• Several of the PowerShellCommunity.org scripting standards are

summarized in the remaining pages of this set of notes.

http://powershellcommunity.org/
http://powershellcommunity.org/
http://powershellcommunity.org/
http://powershellcommunity.org/
http://powershellcommunity.org/

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 38 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Name Your Scripts And Functions Using The Verb-Noun Syntax.

• Although you can use any naming convention, the Verb-Noun syntax

makes it easier for others to understand the purpose of your script, and it

also provides consistency with the native PowerShell cmdlets.

• The Verb-Noun syntax is also used by several other programming

languages, such as VAX VMS/DCL and AS/400 CL, so following this

syntax will help to ensure that your script names are understandable to

users with experience in these languages as well.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 39 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Whenever Possible, Use Verbs From The Standard PowerShell Verb List.

• One of the goals of the PowerShell design team was to enable system

administrators to accomplish most of their tasks using just the standard

set of PowerShell verbs.

• This makes it easier for system administrators to learn about the

properties of new PowerShell nouns, because they will already be

familiar with the common verbs that are used to work with new nouns.

• By running the script shown on the next page, PowerShell will return a

list of all the standard PowerShell verb names.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 40 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 41 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 42 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Use Unique Noun Names.

• Many times, using generic nouns, such as Computer or User, in a script

or function causes a name collision with an existing noun of the same

name.

• If a name collision does occur, users need to explicitly reference the full

path and filename of the script in order for it to run successfully.

• PowerShell addresses this issue by applying a PS prefix to make its

nouns unique (as in PSDrive or PSBreakPoint), and it is recommended

that you use a similar method for any nouns that you reference in your

scripts (as in MyTable or MyPrinter).

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 43 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Make Noun Names Singular.

• Because the English language handles pluralization for different nouns

in different ways (as in single potato or several potatoes, a single mouse

or several mice), using pluralization in PowerShell noun names can be

confusing, especially for those PowerShell users whose first language is

not English.

• This issue is made more complicated by the fact that not all cmdlets

provide support for multiple return values. For example, the get-

date cmdlet can return only a single value, but the get-process

cmdlet can return multiple values.

• If PowerShell users had to guess at the capabilities of a cmdlet based on

whether the noun portion of the cmdlet name was singular or plural, ease

of use would quickly grind to a halt.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 44 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Using Pascal Casing For Script And Function Names – Camel Casing For

Variable Names.

• Pascal casing capitalizes the first letter of each word, such as Get-

Process and ConvertFrom-StringData.

• Camel casing has the first letter of a word in lowercase and capitalizes

subsequent first letters, such as remoteComputerName.

• Using Pascal casing for script names follows the standard used by other

PowerShell cmdlets, whereas using camel casing for variable names

follows the standards established in the .NET style guidelines. Because

of PowerShell’s frequent interaction with .NET objects, methods, and

properties, it makes sense to adhere to the .NET naming standards for

variable names.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 45 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Use Descriptive Variable Names.

• When you are writing a script, the variable names that you choose can

go a long way toward clarifying the actions that your script performs.

• Applying some thought to your choice of variable names can make your

scripts almost self-documenting. Although the variable names $comp

and $remoteComputerDNSName function the same way when used

in a script, the second variable clearly illustrates the data that the

variable contains making any code which contains this variable much

easier to understand.

• This is especially important in environments where your scripts will be

used/modified by multiple administrators with different levels of

scripting knowledge.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 46 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Add A Unique Namespace Prefix To Global Variables.

• As with PowerShell verbs and nouns, it is possible to create naming

collisions with existing environment variables and produce unexpected

results.

• One common way to reduce the possibility of variable name collisions is

to prefix any global variables that you define with a unique identifier for

the namespace. This identifier could be your company name, the name

of the software application, or similarly unique data.

• A global variable is declared in this manner in PowerShell according to

the following syntax:

 ${GLOBAL:uniqueIdentifier.variableName} =

• The example script on the next page further illustrates this convention.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 47 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 48 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Ensure That Your Scripts Run Successfully In Strict Mode.

• Using strict mode in PowerShell is an optional setting that causes PowerShell

to raise a terminating error when a script or expression does not follow best

practice coding standards (such as referencing a variable that does not exist).

• Strict mode in PowerShell can be turned on or off by using the Set-

StrictMode cmdlet, and it is enforced only in the scope where you set it.

• Because some users always run PowerShell with strict mode turned on, it is to

your advantage to verify that your scripts will run in strict mode without

errors. Otherwise, users have to disable strict mode to run the script, and it is

possible that a script that raises an error in strict mode might be written in a

way that causes the script to produce unreliable results. A script that runs

successfully in strict mode meets at least a baseline set of programming

standards, which helps to validate that the script is suitable for use in a

production environment.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 49 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 50 Dr. Mark Llewellyn ©

With strictmode = off, uninitialized

variables are assumed to have a

value of 0 or $null depending on

type.

With strictmode = on, uninitialized

variable access generates errors.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 51 Dr. Mark Llewellyn ©

Summary Of PowerShellCommunity.org Best Practices

Avoid Using Aliases In Scripts Whenever Possible.

• Although there is no technical obstacle to including aliases in a script,

aliases make the script harder to read and understand for those scripters

who are not familiar with all of PowerShell’s command aliases or the

ones you create yourself.

• The reason behind PowerShell’s aliases is to reduce the number of

keystrokes needed when working interactively from the command line.

Thus, there is only a minimal time saving achieved when aliasing

commands in a script, which is quickly erased the next time you need to

review/modify the script and must spend time recalling the commands

that you aliased to once again understand the script.

• In general, readability and ease of understanding should override speed

of data entry when creating a script that will be reused.

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 52 Dr. Mark Llewellyn ©

Aliased Version

Readable?

CNT 4603: Scripting – Windows PowerShell – Part 4 Page 53 Dr. Mark Llewellyn ©

Non-Aliased Version

Much More Readable

